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A longitudinal phase-space tracking code (ESME) is used to model transition crossing in the
Main Injector. The simulation is aimed at various collective and single particle effects contributing to the
longitudinal emittance blowup. Our model takes into account the longitudinal space-charge force (bunch
length oscillation), the transverse space-charge (the Umstiitter effect) and finally the dispersion of the mo-
mentum compaction factor (the Johnsen effect). As a result of this simulation one can separate relative
strengths of the above mechanisms and study their individual effects on the longitudinal phase-space evo-
lution, especially filamentation of the bunch and formation of "galaxy-like" patterns. Finally, a simple
scheme of y-jump is implemented. Comparison of both cases (slow and fast transition crossing) points out
that the above scheme can be very useful in suppressing beam loss and the emittance blowup at transition.
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Introduction

This study is motivated by the longitudinal phase-space dilution effects induced by the transition
crossing. Here we employ ESME! as an effective tool to simulate transition crossing in the Main Injector.
One of the obvious advantages of the simulation compared to existing analytic formalisms, e.g. based on
the Vlasov equation?, is that it allows us to consider the collective effccts in a self-consistent manner with
respect to the changing accelerating conditions. Furthermore this scheme enables us to model nonlinearities

of the longitudinal beam dynamics, which are usually not tractable analytically3.

Implemented in the simulation are both intensity dependent coherent forces (the longitudinal
and transverse space charge) and single-particle kinematic effects due to the explicit momentum offsct de-
pendence of the momentum compaction factor, ¢, Their individual contributions to the longitudinal emit-
tance blowup across transition are studied here. The transition crossing time for the synchronous particle is

identified as a zero synchrotron tune point on the history plot, Fig. 1.

ngitudinal Phase Space Tracking with the Space Charge

The tracking procedure used in ESME consists of tum-by-turn iteration of a pair of Hamilton-

like difference equations describing synchrotron oscillation in 6-¢ phase-space (0 < 0 < 2x for the whole
ring and £ = E - E, where E,, is the synchronous particle encrgy). Knowing the particle distribution in the
azimuthal direction, p(8), and the revolution frequency, o, after each tumn, one can construct the longitu-

dinal wake field induced by the coherent space charge force?

Vi(0) = e, zpn Z, (no,)ein®,

n=—oo

where n

nZ.
Z, [(ne,) = °2 {1+21n§}
2By



Here, a and b are the radii of the beam and the smooth vacuum pipe, respectively,

The above force is defocusing below and focusing above the transition. Therefore it corrects the
equilibrium bunch length to be longer below and shorter above the transition (compare to the case without
any space charge). This yields bunch length oscillation above the transition set off by nonlinear bunch

length overshoot®, This phenomenon can be clearly observed by looking at the history of Orms Or simply by

walching "mountain range" evolution of the azimuthal bunch profile (see Figs. 7 and 12).

Implementation of the Umstitter and Johnson Effects. ¥-jump Scheme

As a result of the transverse space charge forces each particle suffers a horizontal betatron tune

shift, which is proportional to the particle density, p(8), at the given longitudinal position 8. This tune shift

translates directly into the change of v,. Close to the transition, when 1 goes through zero, even very small
corrections 1o ¥, play dominant role and they govern the longitudinal beam dynamics. One of the features of

ESME code is that each particle has its own ¥, which allows us for straightforward implementation of the

Umstinter effect (described above). Similarly, to account for the dispersion of the momentum compaction

factor (Johnsen effect), different parts of the bunch (particles with different momentum offset) are allowed

Lo cross transition at different times. Both contributions to the v, shift are summarized below®

1Y 1 _ o Ap L 1
A(vj’ ZthRBWaZ p(8) — a1 “ 7= 20 7 )

The last term in the above equation represents some external ¥-jump accomplished by firing a

pulsed quadrupole magnet. One purposely taylors j(t), so that the transition cressing happens much faster

and no significant emittance biowup has time 1o develop. For the purpose of this simulation the last vy, ma-



nipulation is implemented according to a simple n-program presented in Fig. 2. Here the rate of transition

crossing is boosted by the factor of four (see Fig. 2)

ESME Simulation

As a starting point for our simulation a single bucket in 8—¢ phase-space is populated with 5000
macro-particles according to a bi-Gaussian distribution matched to the bucket so that 95% of the beam is
confined within the contour of the longitudinal emittance of 0.4 eV—sec. Each macro-particle is assigned an

effective charge 1o simulate a bunch intensity of 6x10!0 protons.

The first set of results, Fig.3-7, corresponds to the situation when only intensity dependent co-
herent forces are present (o] = 0). The simulation is carried out over a symmetric (with respect 1o the tran-
sition) time interval of 2700 turns. Fig. 3 represents a sequence of the longitudinal phase space snap-shots
taken every 400 tarns. One can clearly see dilutions effects leading to extensive filamentation of the beam
at transition. Fig. 4 illustrates longitudinal emittance blowup (100%) and beam loss (5% at transition. The
same characteristics for faster transition crossing are collected for comparison in Figs. 5 and 6. Here the

emittance blowup reaches only 12% with no beam loss.

To visualize the position and shape of individual bunches as they evolve in time one can com-

pose a "mountain range” diagram4 by plotting 8-projections of the bunch density in equal increments of
revolation number and then stacking the projections to imitate the time flow. The resulting mountain range

plots for both cases are compared in Fig. 7.

The second set of simulations incorporates in addition to previcusly discussed coherent space

charge forces also the Johnsen effect. The dispersion of the momentum compaction factor, oy, is assigned a
value of 5x10~3 and all three features described by Eqs. (1) and (2) ar¢ used in the simulation. Again, the

phase-space snap shols, Figs. 8 and 9, refer to slower transition crossing, while Figs. 10 and 11 describe the

scenario with y-jump. Figs. 8 and 9 illustrate catastrophic beam loss at transition (50% loss}); one can sce

very sharp tails made of particles rapidly steaming out of the bucket to the unstable region of the phase-



space. When the y,-jump is applied (see Figs. 10 and 11) the development of tails is much slower and the

transition is successfully crossed with about 75% emittance blowout and about 6% beam loss. Finally, the

mountain range plots for the case without and with the y,-jump (labeled by A and B) are summarized in

Fig.12.

Conclusions

One can see from our simulation that the presence of large o has crucial impact on beam degrada-

tion at transition. One can look at the Johnsen effect using simple physical picture of instantaneous phase
space configurations. Particle with large positive momentum offset cross transition sooner than the syn-
chronous particle and they end up "seeing” unstable phase-space region long before the synchronous phase
is "snapped” (¢, — & — ¢, at the transition crossing for the synchronous particie). They follow unstable or-

bits in phase space and eventually leave the bucket (long tail formation). Similarly, for particles with large
negative momentum offset transition crossing is delayed with respect to the synchronous particle. After the
synchronous phase "snap” they are still below transition and drifting into unstable region, which contributes
to formation of the second tail (see Figs. 3, 5, 8 and 10). However by speeding up the transition crossing

one can easily recover from substantial emittance blowup and beam loss. Therefore the vy,-jump scheme

should be given serious consideration in the context of Main Injector lattice design.
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